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¢) 0< m,< B () and Ryp) < ms on [0, b].
Dome-shaped shells whose middle surface is a part of an ellipsoid, paraboloid, two-
sheet hyperboloid, and other surfaces of revolution,
2) According to [4] condition (2, 2) guarantees the convergence of projective methods,
3) Similar results can be obtained in the case of a shallow symmetrically loaded
spherical dome and other shallow symmetrically loaded surfaces of revolution
(Y= v’ B-!in(1,1)),if conditions (a), (b), (c) are satisfied,
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We solve a Cauchy problem for a viscoelastic transversely isotropic medium, Generaliz-
ing the method of separation of variables for certain classes of static problems treated
in [1], and using this method, we reduce the system of integro-partial differential equa-
tions to a system of ordinary differential equations in the time coordinate, Solving the
latter system by the method of averaging [2, 3], we obtain explicit formulas character-
izing the propagation of waves in a viscoelastic transversely isotropic medium,

Using the relationship between stress and strain for the medium in question [4] and
identifying the regular part of the relaxation kernels, we write the system of equations
for a viscoelastic transversely isotropic medium in cylindrical coordinates as follows:
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Here the ¢;; are the elastic constants of the given medium; the ¢;;* are operators defined
by the formulas given above; I'; = I'; (¢t — 1) are the regular parts of the relaxation ker-
nels (for brevity we shall henceforth omit the argument ¢ — 1).

For reinforced load-carrying structures made of polymer materials the regular parts of
the relaxation kernels are proportional to small parameters [4], therefore in the system
(1) we can replace the ¢i5* by ec;5* (e > 0 is a small parameter), The method of averag-
ing, used in solving the problem, the existence of the small parameter e. In the final
results we can set ¢ =

We seek a solution of system (1) in the form

W= J, @) 1, =123, v=4k*E1 k (2)
where the J, (@r) are Bessel functions of the first kind, After substituting the expressions

(2) into Eg, (1) we obtain a system of ordinary integro-differential equations in the time
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The solution of the system (3) when the viscosity (the integral term) is not taken into

account has the form
(4)

Ti,e (1) = €y cos Ayt 4 Cysin ky 1 4 €y cos hyt = Cy sin Aot = Cycos Agt & Ce sin Ayt
Ty (1) = ay (Cycos Ayt 4= Cy 8in Agt) -+ a3 (Cycoshgt + Cosin Ay 1)
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To find the solution of the system (3) with viscosity taken into account we reduce the
system to "standard form™ by applying the method of variation of parameters in which
the ¢, are considered as unknown functions of time
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To the system (5) we make correspond the averaged system
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Integrating the system (€), we obtain
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where the 4; and B;are arbitrary constants, ; - 1,2,3. It was shown in {3], under very
general conditions, that over a sufficiently large finite time interval the solution of the
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system (6) is arbitrarily close to the solution of the system (5),

In accord with theorems on averaging the solution of the system (3) can be represen-
ted approximately in the form (4) wherein the C; are replaced by §; (). The most ge-
neral form of the solution is obtained by substituting this approximate solution into Eq,
(2), summing with respect to 4 and integrating with respect to o and §
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A comparison of the solution obtained with that given in [5] shows that in the case of a
viscoelastic medium there is an exponential damping of the amplitude and a phase shift,

In solving the Cauchy problem we consider arbitrary initial conditions, wherein we
assume that the boundary functions admit Fourier and Hankel transforms with respect to
z and r , which are expandable in a Fourier series with respect to ¢ ¢

W 2 ) g =f; (r Go2)= ) e““@S J, (ar) da Seiﬁz 70 (@, B)d3  (8)
Rem-—00 i} 0

d
'é"gWi (r* q:'! z, t) (=0 = f_i+3 (l", qjv Z)

Equating the right sides of (8) to the right sides of the solution (7) and its derivatives
with respect to ¢t at == 0, we obtain the constants
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If in the expansions of the boundary functions with respect to ¢ we limit ourselves to a
finite number of terms, the solution of the problem is then also represented in a form
involving a finite number of terms and the formulas so obtained can be used for compu-
tational purposes,
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